• English
    • Lietuvių
  • English 
    • English
    • Lietuvių
  • Login
View Item 
  •   Home
  • Knygos, straipsniai ir mokslinių konferencijų medžiaga / Books, Articles and Conference materials
  • Mokslinių konferencijų medžiaga / Conference materials
  • View Item
  •   Home
  • Knygos, straipsniai ir mokslinių konferencijų medžiaga / Books, Articles and Conference materials
  • Mokslinių konferencijų medžiaga / Conference materials
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Acquiring Terminological Relations with Neural Models for Multilingual LLOD Resources

Thumbnail
Download
LLOD_2022 Book of Abstracts-11.pdf (46.66Kb)
Date
2022
Author
Gromann, Dagmar
Metadata
Show full item record
Abstract
Specialized communication strongly benefits from the availability of structured and consistent domain-specific knowledge in LLOD language resources. Manually curating such language resources is cumbersome and time-intensive. Thus, automated approaches for extracting terms, concepts, and their interrelations are required. Recent advances in computational linguistics have enabled the training of highly multilingual neural language models, such as GPT-3 or XLM-R, that can successfully be adapted to various downstream tasks, from sentiment classification and text completion to information extraction. Furthermore, several approaches exist to extract and explore lexico-semantic relations by means of these language models, however, only few focus on curating, representing, and interchanging domain-specific language resources in the LLOD cloud.
URI
https://repository.mruni.eu/handle/007/18662
Collections
  • Mokslinių konferencijų medžiaga / Conference materials [645]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV