• English
    • Lietuvių
  • English 
    • English
    • Lietuvių
  • Login
View Item 
  •   Home
  • Knygos, straipsniai ir mokslinių konferencijų medžiaga / Books, Articles and Conference materials
  • Mokslinių konferencijų medžiaga / Conference materials
  • View Item
  •   Home
  • Knygos, straipsniai ir mokslinių konferencijų medžiaga / Books, Articles and Conference materials
  • Mokslinių konferencijų medžiaga / Conference materials
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic Extraction of Lithuanian Cybersecurity Terms Using Deep Learning Approaches

Thumbnail
Download
Rokas_Rackevičienė_Utka.pdf (14.96Mb)
Date
2020
Author
Rokas, Aivaras
Rackevičienė, Sigita
Utka, Andrius
Metadata
Show full item record
Abstract
The paper presents the results of research on deep learning methods aiming to determine the most effective one for automatic extraction of Lithuanian terms from a specialized domain (cybersecurity) with very restricted resources. A semi-supervised approach to deep learning was chosen for the research as Lithuanian is a less resourced language and large amounts of data, necessary for unsupervised methods, are not available in the selected domain. The findings of the research show that Bi-LSTM network with Bidirectional Encoder Representations from Transformers (BERT) can achieve close to state-of-the-art results.
URI
https://repository.mruni.eu/handle/007/16645
Collections
  • Mokslinių konferencijų medžiaga / Conference materials [264]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV